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Abstract 

A procedure to improve phases by a Metropolis-like 
algorithm (MLA) in reciprocal space is presented. It 
uses a density modification method (DMM) in a MLA 
to evaluate progress and to suggest changes to phase 
angles. First, in the neighborhood of the trial values 
derived from a DMM, new options for the phase 
angles are generated. Then, a DMM is used to evalu- 
ate and improve compliance with the rule of non- 
negativity of direct methods. The procedure of 
D M M ~  phase change~ DMM-~ phase change is 
iterated several times. For a centrosymmetric case in 
which phases may not be changed by a DMM, compli- 
ance with the non-negativity rule is judged by the 
ratio of observed to calculated structure-factor ampli- 
tudes, and new options for the phase angles are 
generated by adding 180 °. For a non-centrosymmetric 
case both the amplitude and the phase values of the 
structure factors before and after a DMM may differ. 
However, only the phase values are used to judge the 
compliance with the non-negativity rule, and to 
decide phase shifts in a subsequent phase change 
step. This procedure is shown to improve the phases 
determined ab initio by the consistent electron density 
approach [Bhat (1984). Acta Cryst. A40, C15; (1985). 
Am. Crystallogr. Assoc. Annu. Meet., Stanford, 
California. Abstr. HI]. The mean phase errors for the 
phases obtained by the procedure proposed here 
ranged from 55 to 25 ° in different tests, significantly 
better than those obtained from a DMM under similar 
conditions. 

Introduction 

The Metropolis algorithm (Metropolis, Rosenbluth, 
Rosenbluth, Teller & Teller, 1953) (also known as 
simulated annealing or dynamics with 'slow cooling') 
may be thought of as an algorithm for very large-scale 
problems of non-linear equations (Press, Flannery, 
Teukolsky & Vetterling, 1988). Simulated annealing 
is specially designed for cases which lead to several 
local minima. Other methods, such as ones using 
derivatives, such as Newton's, or conjugate gradients 
may be compared to 'rapid cooling'. These methods 
look for nearby minima, which may be found quickly 
but may not be the lowest (Press et al., 1988). By 
contrast, simulated annealing takes 'downhill' steps 
while sometimes allowing 'uphill' steps so as to skip 
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a barrier giving rise to a local minimum. In this 
algorithm, shifts are not obtained from the derivatives 
and hence the corrections need not stop when the 
derivatives tend to zero at a local minimum. Here its 
use is proposed to improve tentative phase angles in 
a phase improvement procedure (PIP). The use of 
the PIP to improve ab initio phases determined by 
the consistent electron density approach (CEDA; 
Bhat, 1984, 1985) is illustrated below for both cen- 
trosymmetric and non-centrosymmetric cases. These 
results from PIP are compared with those obtained 
from the use of a DMM alone. 

The method 

The basic steps of the Metropolis-like algorithm 
(MLA) proposed here in a phase improvement pro- 
cedure are: 

(1) description of a possible configuration of the 
system; 

(2) generation of changes in that configuration; 
these changes are the options presented to the system; 

(3) correction of non-beneficial changes made in 
step (2); and 

(4) use of an appropriate annealing schedule, with 
a control parameter T (analog of 'temperature') for 
step (2) above. 

In the PIP, progress is evaluated using a DMM 
(Hope & Gassman, 1968) in step 3. If this DMM is 
adequate to distinguish beneficial from non-beneficial 
changes, the result of step 2 above, followed by the 
DMM, will be an improved result. 

Different generators of phase changes are used in 
step 2 for the two symmetry cases. For a centrosym- 
metric case the phases are restricted to one of the two 
possible values, and a DMM may not be able to effect 
such large phase changes. Hence, the compliance with 
a density modification function in step 3 cannot be 
judged from the phase change due to a DMM. There- 
fore, the compliance with the density modification 
function is judged by the ratio of the structure-factor 
amplitudes before and after a DMM. Thus in step 2 
above, following a DMM phase angles are changed 
by 180 ° for reflections showing a poor ratio of calcu- 
lated to observed structure-factor amplitudes. The 
success of such a change is again evaluated using a 
DMM, and the process of phase change and its evalu- 
ation is iterated several times (see below). 
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For a non-centrosymmetric case both the ratio of 
the structure-factor amplitudes and the phase changes 
due to a DMM may be used to estimate the compli- 
ance with the density modification function. 
However, because of lack of restriction (e.g. 0 or 180 °) 
on phases, the ratio of the amplitudes may be used 
in the phase-change step 2 only through a function 
relating that ratio to a possible phase error. Therefore, 
in this preliminary effort to develop the PIP, only the 
phase changes due to a DMM are used to estimate 
the compliance, and thus to decide shifts in step 2 of 
the algorithm. 

The true minimum is distinguished from a false 
minimum by its behavior. The true minimum will be 
more pronounced and sustained throughout than a 
false minimum. Thus, we assume that, near the right 
minimum, the net phase change from a phase change 
step and a DMM is negligible; that is, a cancelling-out 
effect ('complementarity') will be seen between the 
phase shifts from these two steps. A lack of such 
'complementarity' in phase shifts from these two steps 
is taken as an indication that the phase is not near 
the true minimum. Therefore, phases showing a 
poorer 'complementarity' are given larger changes in 
step 2. 

For a non-centrosymmetric case the 'complemen- 
tarity' notion and for the centrosymmetric case the 
ratios of calculated to observed structure factors are 
used to introduce phase changes. It is conceivable 
that one might combine these two approaches. For 
example, estimates of phase errors from observed and 
calculated structure-factor amplitudes (Sim, 1959) 
can be used with or without the 'complementarity' 
notion to make changes in step 2. 

The true minimum may be aimed at in a PIP only 
if (a) the DMM accurately expresses the properties 
of the true electron density distribution, and (b) if 
the shifts in the phase-change step 2 are small enough 
to be contained by the true minimum, but large 
enough to overcome all the local minima. In practical 
cases, the above condition is hard to satisfy. Thus 
one may be looking for a minimum which cannot be 
significantly improved with the available information, 
and the PIP may only aim at a workable rather than 
the global minimum. 

(c) the modified map is inverse-Fourier trans- 
formed to obtain structure-factor amplitudes IF c[ and 
phases ~0'; 

(d) phases ~o' are altered from their tentative 
values for selected (centrosymmetric) or for all (non- 
centrosymmetric) reflections as described later. This 
step (performing step 2 in the method) forces some 
'uphill' shifts in a DMM result, and thus permits the 
exploration of other options for the phase angles in 
and around the available values. It provides options 
to verify whether the latest minima for the phases are 
stable to changes, as true minima should be, or are 
merely local minima. By systematically testing other 
values for the phases, it seeks an answer to the ques- 
tion: can we further improve the compliance with the 
density modification function?; 

(e) from the altered phases and the IFol a new 
electron density map is calculated as in (a) above. 

Density modification [step (b)] 

The physical properties of the electron density are 
introduced in a DMM (i) using the observed ampli- 
tudes, and (ii) through a density modification step. 
The most fundamental of the features used in a DMM 
is that of the non-negativity rule (Karle, 1985; Karle 
& Hauptman, 1950; Sayre, 1952; Woolfson, 1987) 
employed by direct methods. This is used here as 
follows: 

p ' = p  if p_>0 
(1) 

p ' = p * S ,  if p < 0 ,  

where S is a positive constant (< 1), which is related 
to the maximum resolution of the data. In the absence 
of series termination and when F(000) is included, 
S is zero at the final cycles of the PIP. For smooth 
convergence, the MLA requires that the shifts be small 
enough to remain in a global minimum. Since the 
shifts are dependent on the value of S, S is chosen 
to give a small R factor (e.g. around 10%) between 
the structure-factor amplitudes calculated from p 
and p'. 

To comply with the non-negativity rule of the elec- 
tron density, the following modifications are often 
used in a DMM: 

The steps of the procedure 

The PIP is an iterative procedure involving a step to 
identify new options for the phase values [(d) below] 
within or beyond tentative minima, and then [steps 
(a) to (c) below] to estimate and improve the compli- 
ance with the expected property of the electron 
density using DMM. The sequence of steps is as 
follows: 

(a) from initial phases ~o and the observed ampli- 
tudes IFol an electron density map p is calculated; 

(b) the map, p, is modified using a DMM; 

p'=p, if p>-C 
(2) 

p'=C, if p<O, 

where C is a small constant for small molecules or 
the solvent level in crystals of macromolecules. 

In macromolecular crystals at low or medium resol- 
ution, not only the errors in the phase angles, but 
also series termination may lead to negative electron 
density values. If the F(000) term is omitted, electron 
density values within a molecular boundary show 
greater positive and negative excursions than in the 
relatively featureless solvent regions (Reynolds et al., 
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1985). A DMM which uses (2) resets large negative 
values to a constant. Such an approach ignores the 
presence of larger negative values due to series termi- 
nation errors. The modification (1) lacks this limita- 
tion as it only tries to attenuate large negative values. 
Thus, this approach permits the co-appearance of 
negative values arising from series termination along 
with zero or smaller negative values due to solvent 
and other factors. 

Phase change [step (d)] 

Because of the restriction on phase angles by sym- 
metry, this step differs for centrosymmetric and n o n -  
centrosymmetric space groups. For centrosymmetric 
cases, the phases ¢ '  are modified in step (d) such that 

~0"=~'+180 ° if Fc/Fo < T  
(3) 

~0" = ~' if F~/Fo>-T,  

where T is a threshold value chosen such that a small 
initial number, e.g. 15%, of the total reflections have 
I Fc / Fol< T. As the iteration proceeds, the number 
of phases affected by (3) is reduced by changing T. 
This step may also be used in a non-centrosymmetr~c 
space group for centric reflections that have special 
phase values (e.g. 17"/2, 37r/2 in P212121). The use of 
F o -  Fc instead of Fc/Fo will not only make T 

sensitive to a scale factor between Fo and IF l but 
will also make the change by (3) to be dominated by 
the stronger low-resolution amplitudes. Use of the 
threshold ratio for the inverse of F~/Fo in (3) is 
not consistent with the statistical derivations by 
Woolfson (1956) and by Sim (1959). Replacement of 
the threshold value by a probability function using 
the expression derived by Woolfson (1956) is a poss- 
ible modification to (3). 

For non-centrosymmetric space groups ~" is 
obtained as 

~p" = ~' + RD&p + A~p. (4) 

D is a damping factor chosen such that the mean 
difference between ~" and ~' is small, e.g. 10 °. An 
excessively large value for D would lead to poor 
convergence of the phases, whereas too small a value 
for D might fail to take the phases out of a local 
minimum. ~ is the lack of 'complementarity' from 
the previous cycle. 8~ =0  corresponds to perfect 
'complementarity', that is, the phase angle sustained 
the perturbations due to the phase change step in the 
previous cycle. R is a random number to explore 
different possibilities during a MLA to improve com- 
pliance with the density modification function. This 
may be compared with the random number used in 
molecular-dynamics simulations to propagate ran- 
dom motion prior to an optimization cycle involving 
stereochemical restraints. In this sense, the phase- 
change step (d) can be called a 'dynamics' step in 

which the phase 'move' in phase space constrained 
by a density modification function. A¢ is a constant 
chosen such that ¢" and ¢ '  differ from each other 
even when/5¢ is zero. A¢ may also be used to increase 
'motion' when phases have converged to a local 
minimum. 

Comparison of centro- and non-centrosymmetric cases 

Equation (3) for phase change in a centrosymmetric 
case is a special case of (4) for the non-centrosym- 
metric case as shown below. For smooth convergence, 
the DMM may introduce only small changes in each 
cycle of a PIP. Because the centric phases calculated 
from two very similar densities are likely to be the 
same, in a PIP the centrosymmetric phases may not 
change through a DMM. Thus for a centrosymmetric 
case, (4) reduces (&p =0)  to (3). Because A¢ can 
only be large (180 °) for a centrosymmetric case, in 
order to maintain a small mean phase change in (3) 
modification is done only for a selected number of 
reflections. A Metropolis algorithm would require this 
selection to be made such that the number of reflec- 
tions changing phase in (3) form a Boltzmann distri- 
bution with respect to an 'energy value' associated 
with [Fc[/[Fo[. This has not been verified in the method 
proposed here, which for this reason is called a 
Metropolis-like, rather than Metropolis, algorithm. 

The phase improvement procedure (PIP) v e r s u s  Monte 
Carlo and molecular-dynamics simulations 

The implementation of a MLA in the PIP is close in 
spirit to the Monte Carlo and molecular-dynamics 
simulations. In Monte Carlo, the acceptance of shifts 
(generated randomly) is determined by a Boltzmann 
distribution factor, whereas in molecular-dynamics 
simulations, random shifts are propagated by solving 
Newton's equations of motion. In PIP, the shifts are 
simulated so as to satisfy the expected density 
modification functions. Thus PIP uses a MLA with 
the expected density modification functions to survey 
possible options for the phases. The molecular- 
dynamics and Monte Carlo simulations use the 
Metropolis algorithm with stereochemical restrictions 
to examine possible spatial rearrangements. By 
analogy, the effect of different 'temperatures', if 
required, may be introduced by suitably changing the 
density modification functions. Small modifications 
[that is S - 1  in (1)] in a DMM will lead to smaller 
shifts in (4). 

Molecular dynamics is a useful technique for the 
crystallographic refinement of macromolecules 
(BriJnger, Kuriyan & Karplus, 1987; van Gunsteren 
& Berendsen, 1987; Fujinaga, Gros & van Gunsteren, 
1989). It may be used only when an atomic model is 
available. The PIP is model independent, that is, the 
shifts are directly applied to the phases. However, it 
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must be noted that the results discussed in this article 
are based on calculations with crystals of small 
molecules. The usefulness of the PIP for crystals of 
macromolecules has not been demonstrated. 

The energy barriers for molecular motions arise 
from factors such as non-bonded contacts and 
charge-charge interactions. Molecular dynamics 
overcomes these barriers by introducing motion away 
from the trial positions. The PIP similarly attempts 
to overcome causes preventing change in phase angles 
during DMM and OMIT map [an electron density 
map calculated from the observed amplitudes using 
phases from all but the atoms within and around a 
particular volume (Artymiuk & Blake, 1981; Bhat & 
Cohen, 1984; Bhat, 1988)] cycles of the consistent 
electron density approach (CEDA; Bhat, 1984, 1985). 
Phase angles of low resolution or centric reflections 
may not be readily changed by a DMM or by an 
OMIT map as these reflections may not sense small 
local changes in the electron density values. There- 
fore, a MLA or "dynamics" is proposed here to make 
it easier to overcome these limitations of DMM and 
OMIT map procedures. 

Implementation of the Metropolis-like algorithm in the 
phase improvement procedure (PIP) 

Equations (3) and (4) used for the two symmetry 
cases can be compared to the elements of the 
Metropolis algorithm as follows. The use of the 
Metropolis algorithm, for example, in the travelling- 
salesman problem (Press et al., 1988) assumes that 
the system can be grouped into several smaller sec- 
tions. Each section may be given new options and a 
penalty function can be calculated. From this func- 
tion, the method accepts or rejects the suggested 
option. The Metropolis algorithm also assumes that, 
for a given section, the number of options is finite. 
Similarly in the phase problem each reflection may 
be treated as a section. For centrosymmetric reflec- 
tions, the options are indeed finite (0 or 180°), and 
these two possibilities may be tried one by one for 
reflections with poor levi to IFol ratio [(3)] after the 
inverse Fourier transforms of a modified electron- 
density map. However, for the non-centrosymmetric 
case, possible values for phase are infinite, and it is 
inconceivable to try all of them; the IF~I/IFol ratio 
does not right away suggest new options for the phase 
angles either. Therefore, the 'complementarity '  notion 
is introduced to obtain [(4)] the trial values for explor- 
ing other possibilities of the phase angles in step 2. 
Our results from (4) are encouraging (see below) 
when used with reasonable starting phases for a small 
molecule. However, as discussed later, the chances 
of reaching a workable minimum depend on the tenta- 
tive starting phases. Therefore, the validity of such a 
'complementarity '  notion for different starting condi- 
tions needs further thought and experimentation. 

Table 1. Phase errors as a function of resolution after 
0, 10, 20, 30 cycles of  the phase improvement procedure 

at 1.5A resolution ( E >  l) for H P A T T  

Starting phases were obtained by the C E D A  (Bhat et al., 1990). 

Cycle Phase error (°) from oo to resolution (/~) 
number  5.0 3-0 2.5 2.0 1.7 1.5 

0 0 54 49 65 88 83 
10 0 72 65 56 73 77 
20 0 36 33 35 62 69 
30 0 18 16 29 48 52 

Number of 2 10 11 25 49 65 
reflections 

Application for a centrosymmetric case 

The structure of 5-hydroxy-5-phenyl-7-azatricyclo- 
[7 .4 .0 .02 '7]  trideca - 2 , 9  (1), 10,12 - tetraen - 8 - one 
(HPATT; Bhat, Ammon, Mazzocchi & Oda, 1990) 
was solved from an E map calculated with phases 
determined ab initio by the consistent electron density 
approach (CEDA). The mean phase difference (phase 
error) between the phases determined by the CEDA 
and those from the final refined model was 49 ° to 
2.5/~,, and 83 ° for data to 1.5 ]k resolution. All E 
values - 1 were used. The space ~roup is P21/n, with 
a =7.408, b =22.311, c=8 .613  A, /3 = 103.53 ° . The 
molecular formula is C~sHtsNO2, with one molecule 
per asymmetric unit. The structure was refined to an 
R factor of 0.05 for the 963 IFol. 

The phase values determined [prior to the model 
building step of Bhat et al. (1990)~ by the CEDA for 
reflections with E >- 1, out to 1.5 A, were used as the 
starting phases for a PIP. The routines described by 
Bhat (1988) were used for the calculation of both the 
forward and the inverse Fourier transforms. These 
transforms used 30, 90 and 36 grid divisions along a, 
b and c respectively. The PIP was applied in the 
following three stages. [These three stages may be 
compared to the simulated annealing technique of a 
Metropolis proce0dure which initially permits large 
changes (heating) and then gradually limits them 
(cooling) as the cycle proceeds]. 

Stage 1: From the phases determined by the CEDA 
an E map was calculated for all the reflections out 
to 1.5 ~ with E - 1 .  Values in this E map were 
modified using (1) with S=0 .35 .  The E map was 
inverse Fourier transformed to get levi giving an R 
factor of 0.07 with 

R = Y, IIEcl- klEoll/  IEol, (5) 
where k is a scale factor. At this stage, for the 1.5 
data set the error in q~' was 83 ° (Table 1). About 20% 
of the total reflections had an IEcl/IEol ratio of less 
than 0.65. Therefore 0-65 was chosen as the value of 
T in (3) and ten cycles of the PIP [steps (a) to (d)]  
were performed. During these cycles, the phase error 
for the 1.5 ,~ data set improved from 83 to 77 ° (Table 
2). During the last few cycles the phase error oscil- 
lated between 69 and 80 ° . 
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Table 2. Errors in phase angles after the phase improve- 
ment procedure for HPATT using the 1.5 ~ data set 

( E > I )  

Ab initio phases were obtained by the C E D A  (Bhat et al., 1990). 

Cycle number  Phase error (o) to 1.5/~, 

1 83 
2 86 
3 86 
4 75 
5 75 
6 72 
7 72 
8 80 
9 69 

10 77 
11 69 
12 66 
13 66 
14 69 
15 61 
16 69 
17 61 
18 69 
19 61 
20 69 
21 61 
22 64 
23 61 
24 64 
25 55 
26 55 
27 52 
28 55 
29 55 
30 52 

Stage 2: Ten additional PIP cycles were done 
choosing T such that about ten phases were changed 
by (3) in each cycle. This reduced the phase error to 
69°; it ranged from 61 to 69 ° in the last few cycles. 

Step 3: Ten further cycles were performed choosing 
T such that only about five phases were changed in 
step (d) by (3), and the error decreased to about 52 °. 
During the last few cycles the phase error ranged 
from 52 to 55 ° (Table 2) for all the reflections out to 
1.5 A resolution with E > 1. The corresponding value 
for all the reflections to 2.5 A resolution is 16 ° which 
is a decrease of 33 ° from the initial error. The phase 
angles at the end of 0, 10, 20 and 30 cycles are given 
in Table 3. 

U s e  o f  t h e  p h a s e  i m p r o v e m e n t  p r o c e d u r e  i n  a n o n -  

c e n t r o s y m m e t r i c  c a s e  

T h e  s t r u c t u r e  o f  N,N,N',N'-tetrakis(2-fluoro-2,2- 
d i n i t r o e t h y l ) o x a m i d e  ( T O )  h a s  b e e n  s o l v e d  ( B h a t  & 

A m m o n ,  1 9 8 7 ,  1 9 9 0 )  u s i n g  p h a s e s  d e t e r m i n e d  b y  t h e  

C E D A .  T h e  p h a s e  e r r o r  w a s  67  ° f o r  a l l  t h e  r e f l e c t i o n s  

o u t  t o  3 ~ w i t h  o b s e r v e d  s t r u c t u r e - f a c t o r  a m p l i t u d e  

- 1 7 0 .  T h e  m o l e c u l a r  f o r m u l a  is C I o H s F a N l o O 1 8 ,  w i t h  

o n e  m o l e c u l e  p e r  a s y m m e t r i c  u n i t .  T h e  s p a c e  g r o u p  

is Pc w i t h  a = 7 . 8 8 ,  b = 6 . 7 7 8 ,  c = 2 1 . 5 9 5 ~ ,  / 3 =  

1 0 8 . 2 1  °. T h e  s t r u c t u r e  w a s  r e f i n e d  t o  a n  R f a c t o r  o f  

T a b l e  3. Reflection data and phase angles after 
0,  10,  2 0  and 3 0  cycles of  the phase improvement 
procedure for H P A T T  using the 1 .5  ~k data set 

( E > I )  

Starting phases were obta ined by the C E D A  (Bhat et al., 1990). 

Phases (°) in cycle number  

h k l IEol 0 10 20 30 

- 4  0 4 1.19 180 180 180 180 
-4  3 1 1.87 0 0 0 0 
- 4  3 4 1.17 180 0 0 0 
- 4  4 1 1.25 180 180 0 0 
-4  5 1 1.31 180 180 180 180 
-4  6 2 1.25 180 180 0 0 
-3  1 1 1.13 0 180 180 180 
-3  3 3 1.45 180 180 180 180 
-2  2 1 1.08 0 0 0 0 
-2  3 4 1.36 180 180 180 180 
-2  5 4 1.40 180 180 180 180 
-2  6 5 1.20 180 180 0 0 
-2  7 3 1.12 180 0 0 0 
-2  9 2 1.23 0 0 0 0 
-2  10 2 1.41 0 0 0 180 
-2  12 1 1.05 180 180 180 180 
- 1  1 4 1.51 180 180 180 180 
-1 2 1 1.04 0 0 0 0 
-1 2 5 1.21 180 0 180 0 
-1 5 3 1-55 180 180 180 180 
-1 6 3 1"87 180 180 180 180 
-1 6 4 1"20 180 180 180 180 
-1 9 3 1"17 0 180 0 180 
- 1  10 1 1"09 180 0 0 0 
-1 12 1 1"51 0 0 0 0 
-1 12 3 1"11 0 180 0 180 

0 3 1 1"27 0 0 0 0 
0 4 2 1-46 180 180 180 180 
0 4 4 1.20 0 0 0 0 
0 6 1 1.22 180 0 180 180 
0 6 4 1.11 180 0 180 180 
0 8 3 1.41 180 180 180 180 
0 9 1 1.72 180 0 0 0 
0 9 2 1.60 180 180 180 180 
0 10 0 1-31 180 180 180 180 
0 10 3 1.31 0 0 0 0 
0 11 1 1.14 180 180 180 180 
1 - 1 0  0 1.07 180 180 180 180 
1 0 3 1.91 0 0 180 180 
1 0 5 1-44 0 0 0 0 
1 2 5 1-05 180 180 180 180 
1 3 4 1-54 0 0 0 0 
1 4 0 1.03 180 180 180 180 
1 5 3 1.55 0 0 0 0 
1 6 3 1-63 180 0 0 0 
1 8 2 1-40 0 0 0 0 
1 10 3 1.39 0 180 0 0 
1 11 3 1.18 0 180 180 180 
2 -5  0 1.02 180 180 180 180 
2 - 4  0 1.27 0 0 0 180 
2 -3  0 1.62 lg~ 180 180 180 
2 -2  0 1.97 0 0 180 180 
2 0 0 2.39 180 180 180 180 
2 4 2 1.32 0 0 0 0 
2 6 4 1.19 0 180 0 0 
2 9 3 1.67 180 180 0 180 
3 3 3 1-07 180 0 180 180 
3 5 3 1.01 180 180 180 180 
3 7 0 1-28 180 0 180 180 
4 -7  0 1.04 180 180 0 0 
4 -6  0 1.19 0 0 0 0 
4 - 4  0 1.61 180 0 180 180 
4 -3  0 2.53 180 180 0 0 
4 0 0 1.31 180 0 0 0 
4 1 0 1-38 0 0 180 180 
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Table 4. Errors in phase angles after the phase improve- 
ment procedure, and density modification cycles for TO 

Ab initio phases  were ob ta ined  by the C E D A  (Bhat  & A m m o n ,  
1990). 

Phase error  (°) to 3/~, 
Cycle  n u m b e r  P IP  D M M  

0 66.88 66.88 
1 66.88 66.46 
2 66.90 66.16 
3 66.81 65.98 
4 66.84 65.87 
5 66.76 65.87 
6 66.78 65.84 
7 66-70 65.57 
8 57.15 65.28 
9 58.41 64-99 

10 56-99 64.75 
11 56.15 64.74 
12 57.36 64.67 
13 55.59 64.32 
14 56.93 63.97 
15 55-97 63.76 
16 55.61 63.75 
17 55.47 63.74 
18 52.25 63.73 
19 55-26 63.46 
20 49.26 63.36 
21 52-69 63.35 
22 46-90 63-33 

0.047 for the 1733 ]Fol. The phases determined (prior 
to the model-building step of Bhat & Ammon, 1990) 
ab initio by the CEDA were improved by PIP as 
follows. 

Initial phases for TO were better than those of 
HPATT, hence an annealing schedule with varying 
D and A~ was not used for TO. 22 cycles of PIP 
were performed with S = 0.9 in (1) and D = 0.5, A~0 = 
0.02 x 360 ° in (4). These calculations used 28, 26 and 
76 grid divisions along the a, b and c axes respectively. 
The phase error for the 3 A data set decreased from 
67 to 47 ° (Table 4) and during the last few cycles it 
oscillated between 47 and 52 ° . 

False minima and convergence 

Success of a MLA depends on the validity of the 
approaches for the phase change and progress evalu- 
ation steps (2 and 3). In our tests with the PIP, shifts 
(step 2) were dependent on the compliance with the 
non-negativity rule imposed by a DMM. However, 
the DMM itself is based on the tentative electron 
density. Therefore, the density modification functions 
leading to the final minimum are not 'absolute' ,  that 
is, they are not independent of the tentative phases. 
Such a dependence between the functions defining 
the final minimum and the initial density values itself 
may cause problems, that is, step (b) may not 
necessarily distinguish beneficial from non-beneficial 
changes made by step (d) when the starting phases 
are far from the true minimum. The following tests 
were done to study such correlations. 

The phases obtained by the method for the cen- 
trosymmetric case (HPATT) were randomly altered 

Table 5. Initial and final phase errors (o) after 20 cycles 
of the phase improvement procedure for HPA TT 

Initial phases  were  ob ta ined  by  in t roducing  r a n d o m  errors  to the 
phases  ob ta ined  ab initio by the C E D A  fol lowed by  the phase  

i m p r o v e m e n t  procedure .  

Set Init ial  e r ror  Final e r ror  

1 75 53 
2 69 41 
3 77 55 
4 75 30 
5 64 25 

and the first five sets which had phase error of <80 ° 
were improved (Table 5) in 20 cycles of stage 1. T 
was chosen so as to change the sign of about two 
reflections in each cycle. In all these calculations the 
accuracy of the phases improved significantly; in one 
case the error was only 25 ° from the phases of the 
refined final atomic model (Fig. 1). However, calcula- 
tions initiated with a mean phase error of about 90 ° 
lead to only marginal improvements (about 10 ° ) 
under similar conditions. These calculations suggest 
that an initial set of non-random phases (from a 
CEDA in the test calculations) are necessary for the 
success of the method when used with the minimiz- 
ation function suggested in this paper. The possibility 
of choosing functional forms different from (4) has 
not been studied. A function based on maximum 
entropy is a possibility. These calculations took about 
4 CPU min per cycle on a VAXstation 3500. 

The phase improvement procedure v e r s u s  a density 
modification procedure 

For a given reflection, improvement in the ratio of 
IFcl to IFol is likely to be seen even at a false minimum, 
and since there are many false minima and only one 
right one, results ofa  DMM are likely to be influenced 
by false minima. However, a local minimum will be 
less pronounced (smaller ratio of IFJ to IFol, poorer 
'complementarity ')  than the global minimum. The 
PIP exploits this unique property of the true minimum 
to aim at better results. The following tests were done 
with HPATT and TO to compare a DMM with the 
PIP. For these structures, the phases determined by 
the CEDA were not the best that could be obtained 
but the calculation was stopped when the map was 
good enough to be interpreted. Therefore, additional 
DMM cycles were performed with the same par- 
ameters used in PIP. These calculations to improve 
further the phases determined by the CEDA used a 
DMM: 

~p' --~-~. p. Fo , ~o ~ p ,~o~,~ -~--~ IF~, ~' 
modification (6) 

The density modification steps were as outlined in (1). 
The procedure (6) did not improve the phases for 

the centrosymmetric case (HPATT) described above. 
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(a) 

(b) 

_ ,  

(c) 

Fig. 1. Electron density maps for HPATI" with phases from the 
phase improvement procedure. (a) Phase error of  42°; (b)phase  
error of  25 °. (c) Phases from the refined model. The atomic 
model is also shown. The same contour level is used in all the 
figures. 

This lack of progress by the DMM may be explained 
as follows. Centrosymmetric reflections pose a special 
problem for phase refinement methods such as DMM 
or the CEDA. These methods improve the phases by 
gradually shifting their initial phase angles (Bhat et 
al., 1990), which is not possible if the phases are 
restricted to 0 or 180 °. 

For the non-centrosymmetric case (TO) the phases 
determined by the CEDA could be improved by the 
DMM alone (Table 4) from 67 to 63 ° in 22 cycles. 
The value of S in (1) and the sampling interval in 
the Fourier transforms were the same for both the 
PIP and the DMM. Under these identical conditions, 
the DMM improved the phases by only 4 ° whereas 
the PIP improved the phases by 20 ° . 

Discussion 

The PIP uses a MLA systematically to test alternative 
phases to improve DMM or CEDA results. During 
each cycle of the procedure an electron density map 
is calculated. This map is subjected to a~DMM. From 
the modified map new phases are calculated by 
inverse Fourier transforms. These two steps give shifts 
for improving agreements between the density- 
modified and the starting electron density. These 
phases are altered to introduce some 'uphill steps' or 
to provide additional options during a MLA to change 
phases. The procedure electron density-~DMM--> 
phase change--> electron density is iterated several 
times. Success of this procedure to improve phases 
depends on the ability of the DMM to correct non- 
beneficial changes made in the phase-change step. 
Different phase-change steps are suggested for the 
two symmetry cases. For centrosymmetric space 
groups, phases can be changed only by a large value, 
i.e. 180 °, and hence, to reduce the mean phase change 
per cycle, phases of only a few selected reflections 
are changed. For a non-centrosymmetric case, phases 
of all reflections are changed by a small value using 
a function of the phase change suggested by the 
previous cycle. A selection criterion similar to that of 
the centrosymmetric case could have been used also 
in the non-centrosymmetric case. A more general form 
of such a criterion may include resolution as well as 
the magnitude of the structure factors, and phase 
shifts based on statistical considerations (Sim, 1959; 
Woolfson, 1956) in the phase-change step. 

Tile test calculations were chosen to study the PIP 
incorporating a very simple DMM. This step used 
only the non-negativity rule of direct methods, though 
it would have been possible to apply other restraints 
[see the reviews of Podjarny, Bhat & Zwick (1987), 
Tulinsky (1985) and Wang (1985)] as well. 

The parameters used in our calculations may not 
be optimal. Systematic attempts were not made to 
vary these parameters in a search for better results. 
The determination of the crystal structures of two 
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small molecules starting from the phases obtained by 
the CEDA, together with the results from the PIP 
illustrate ab initio phase determination and sub- 
sequent phase refinement. These were obtained using 
restraints currently employed in DMM. The results 
are encouraging, although the usefulness of the pro- 
posed method in routine structure determination 
requires further thought and investigation. 

I am grateful to Dr R. J. Poljak for useful dis- 
cussions, and to Drs H. L. Ammon, M. Oda and H. 
Mazzocchi for providing the crystal data used in the 
calculations described above. This research was sup- 
ported by grants from the CNRS (URA 359) and the 
Institut Pasteur. 
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Abstract 

Twelve arithmetic crystal classes contain only one 
space-group type; others contain various numbers up 
to sixteen (mmmP and 4/mmmP). In the multi- 
member classes the number Nsg of substances having 
a particular space-group type can be modelled quanti- 
tatively (unweighted R2~ 0.05) by 

Nsg = Ace exp {~ (Xi)cc[xi]~g}, 

where Ave is a normalizing constant for the arithmetic 
crystal class, [xi]~g is the number of symmetry ele- 
ments [2, 21, m, a, b, c, d, n, 3, 3, 31,32, 4 , . . . ]  of type 
xi in the unit cell of the space-group type, (Xi)~c is a 
parameter characteristic of the arithmetic crystal class 
and the symmetry element, and the summation is over 
all the elements xi that are to be considered. In many 
cases the parameters X~ are equal, within their esti- 
mated standard deviations, throughout a cohort larger 
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than the arithmetic crystal class (such as a geometric 
crystal class or an entire crystal system). The above 
equation can then be applied to the larger cohort, 
with arithmetic crystal class included as an additional 
'symmetry element' in the sum in the exponent. There 
is at present no theory to account for the different 
popularities of different arithmetic crystal classes. 

1. Introduction 

The space-group type P21/c accounts for about one- 
third of all known molecular organic structures, 
whereas the space-group type P2/m has no certain 
example. Why? Ultimately the space group of a crys- 
tal of a particular substance is determined by the 
minimum (or a local minimum) of the thermodynamic 
potential (Gibbs free energy) of the van der Waals 
and other forces, but a very simple model goes a long 
way towards 'explaining' the relative frequency of the 
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